Gleichungen mit 2 Unbekannten

Mit Gleichungen die zwei Unbekannte haben, befassen wir uns in diesem Artikel. Dabei erkläre ich euch, was man unter einer Gleichung mit 2 Unbekannten überhaupt versteht und wie man diese löst. Dieser Artikel gehört zu unserem Bereich Mathematik.

Zunächst ein kurzer Hinweis: Jeder, der noch keine Ahnung von Gleichungen hat und solch eine Gleichung noch nicht nach der Unbekannten - meistens x - auflösen kann, sollte sich erst einmal unseren Grundlagen-Artikel zu diesem Gebiet durchlesen:

Wir behandeln in diesem Abschnitt Gleichungen mit zwei Unbekannten. Wer hingegen nach linearen Gleichungssystemen mit zwei Unbekannten sucht, klickt sich in den folgenden Artikel.

Gleichungen mit zwei Unbekannten

Was ist eine lineare Gleichung mit zwei Variablen? Die Antwort darauf liefert die folgende Definition: Gleichungen der Form ax + by + c = 0 sowie Gleichungen, die sich durch äquivalentes Umformen in die eben genannte Form bringen lassen, werden als lineare Gleichungen mit zwei Unbekannten bezeichnet. Zum besseren Verständnis noch ein paar Gleichungen, welche diese Kriterien erfüllen ( jedoch mit teilweise anderer Variablenbezeichnung ):

  • 3x + 2y = 0
  • 2a + 6b = 3
  • 9x + 9c = 12
  • 6x + 27y + 3 = 23

Gleichungen mit 2 Unbekannten lösen

Um eine solche Gleichung nun zu berechnen, löst man diese nach einer der beiden Unbekannten auf. Im Anschluss daran, kann man für für eine der beiden Unbekannten Zahlen einsetzen und damit die andere berechnen. Zum besseren Verständnis erneut Beispiele:

Tabelle nach rechts scrollbar
Beispiel 1:

3x + 2y = 0
| -3x
2y = -3x
| :2
y = -1,5x

Setzen wir nun für "x" Werte ein, so können wir damit y berechnen. Beispiel: Setzen wir für x die Zahl "2" ein, so ergibt sich y = -1,5 · 2 = -3. Zum besseren Verständnis noch ein weiteres Beispiel.

Tabelle nach rechts scrollbar
Beispiel 2:

8a + 4b = 12
| - 8a
4b = 12 - 8a | :4
b = 3 - 2a

Setzen wir nun für "a" Werte ein, so können wir damit b berechnen. Beispiel: Setzen wir für a die Zahl "2" ein, so ergibt sich b = 3 - 2 · 2 = -1. Punkt vor Strich beachten!


Links:



Dennis Rudolph
Über den Autor

Dennis Rudolph hat Mechatronik mit Schwerpunkt Automatisierungstechnik studiert. Neben seiner Arbeit als Ingenieur baute er frustfrei-lernen.de und weitere Lernportale auf. Er ist zudem mit Lernkanälen auf Youtube vertreten und an der Börse aktiv. Mehr über Dennis Rudolph lesen.