Binomialverteilung

Mit der Binomialverteilung befassen wir uns in diesem Artikel. Dabei erklären wir euch, was man unter der Binomialverteilung versteht und wie man sie berechnet. Dieser Artikel gehört zum Bereich Mathematik.

Starten wir ganz kurz mit einer benötigen Definition: Als Bernoulli - Experiment bezeichnet man ein Zufallsexperiment, bei denen sich genau zwei Elemente in der Ergebnismenge befinden. Die Binomialverteilung ist eine der wichtigsten diskreten Wahrscheinlichkeitsverteilungen. Sie beschreibt den wahrscheinlichen Ausgang einer Folge von gleichartigen und unabhängigen Versuchen, die jeweils nur zwei mögliche Ergebnisse haben, also die Ergebnisse von Bernoulli-Prozessen.

Wenn das gewünschte Ergebnis eines Versuches die Wahrscheinlichkeit p besitzt, und die Zahl der Versuche n ist, dann gibt die Binomialverteilung an, mit welcher Wahrscheinlichkeit sich insgesamt k Erfolge einstellen. Unter diesen Voraussetzungen ist der Versuch ein Bernoulli-Versuch. Die Formel lautet wie folgt:

Binomialverteilung

Beispiel:

Bei einer Fertigung werden 5 Prozent ( p = 0.05 ) der Produkte fehlerhaft gefertigt. Zur Qualitätsprüfung werden 5 Produkte ( n = 5) entnommen. Im Folgenden werden die Wahrscheinlichkeiten P für das Vorfinden von genau 1 ( k = 1 ) oder 2 ( k = 2 ) defekten Produkten berechnet.

1 Produkt defekt:

Binomialverteilung Beispiel 1


2 Produkte defekt:

Binomialverteilung Beispiel 2

Links:



Dennis Rudolph
Über den Autor

Dennis Rudolph hat Mechatronik mit Schwerpunkt Automatisierungstechnik studiert. Neben seiner Arbeit als Ingenieur baute er frustfrei-lernen.de und weitere Lernportale auf. Er ist zudem mit Lernkanälen auf Youtube vertreten und an der Börse aktiv. Mehr über Dennis Rudolph lesen.