Mittelpunkt einer Strecke

Dieser Artikel beschäftigt sich mit der Berechnung des Mittelpunkts einer Strecke. Dabei betrachten wir sowohl den Mittelpunkt einer Strecke in der Ebene wie auch im Raum. Dieser Artikel gehört zur Rubrik Mathematik.

Bevor wir mit der Berechnung des Mittelpunkts starten, folgt erst noch ein kurzer Hinweis: Ihr solltet wissen, was ein Vektor ist und was eine Strecke ist. Wem dies noch nicht klar ist, der möge bitte erst einmal die folgenden Artikel lesen. Alle anderen können gleich mit dem nächsten Absatz fortfahren.

Berechnung des Mittelpunkts einer Strecke

Hat man eine Strecke, welche durch die Punkte P1 und P2 begrenzt wird, so interessiert man sich manchmal für deren Mittelpunkt. Gesucht sind somit die Koordinaten des Punktes M, der genau in der Mitte zwischen P1 und P2 liegt. Um diesen zu berechnen, muss man sich einer einfachen Formel bedienen.  Für den ebenen Fall und den räumlichen Fall findet ihr hier nun die Formeln. Im Anschluss gibt es für beide Fälle noch jeweils ein Beispiel.

Mittelpunkt einer Strecke

Beispiel 1: Mittelpunkt in der Ebene

Wir haben die Punkte P1 und  P2 und suchen deren Mittelpunkt.

Mittelpunkt Ebene

Beispiel 2: Mittelpunkt im Raum

Wir haben die Punkte P1 und  P2 und suchen deren Mittelpunkt.

Mittelpunkt Raum

Links:



Dennis Rudolph
Über den Autor

Dennis Rudolph hat Mechatronik mit Schwerpunkt Automatisierungstechnik studiert. Neben seiner Arbeit als Ingenieur baute er frustfrei-lernen.de und weitere Lernportale auf. Er ist zudem mit Lernkanälen auf Youtube vertreten und an der Börse aktiv. Mehr über Dennis Rudolph lesen.